US009170962B2

a2 United States Patent 10) Patent No.: US 9,170,962 B2
Robinson 45) Date of Patent: Oct. 27,2015
(54) DYNAMIC DESIGNATION OF RETIREMENT ;,‘S‘gg,g 51;; g% %gggg g:hWirtZ etal.
_OF- ,500, a
ORDER IN OUT-OF-ORDER STORE QUEUE 2002/0124042 Al 9/2002 Melamed et al.
. . . 2004/0216125 Al 10/2004 Gazda et al.
(75) Inventor: Eric F. Robinson, Raleigh, NC (US) 2005/0060413 Al 3/2005 Oyadomari et al.
2006/0005110 Al 1/2006 Nango et al.
(73) Assignee: International Business Machines %882; 82?222;‘ ﬁ} 49‘%882 %};kﬂlrie etal. |
: ayama et al.
Corporation, Armonk, NY (US) 2009/0164729 Al 6/2009 Robinson
. . . . . 2009/0164734 Al 6/2009 Robinson
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
US.C. 154(b) by 1295 days. Gharachorloo et al.; Memory Consistency and Event Ordering in
. Scalable Shared-Memory Multiprocessors; 1990; IEEE; pp. 15-26.*
(21)  Appl. No.: 11/963,221 Faherty, C., Office Action dated May 20, 2010; U.S. Appl. No.
. 11/963,043.
(22) Filed: Dec. 21, 2007 Rajwar et al., ‘Transactional Lock-Free Execution of Lock-Based
Programs’; Oct. 2002; ASPLOS ’02; pp. 5-17.
(65) Prior Publication Data Faherty, C., Final Office Action dated Oct. 13, 2010; U.S. Appl. No.
US 2009/0164734 A1 Jun. 25, 2009 11/963,043. ,
(Continued)
(51) Int.ClL
GOG6F 9/30 (2006.01) Primary Examiner — Corey S Faherty
GOGF 9/40 (2006.01) (74) Attorney, Agent, or Firm — Yudell Isidore PLLC;
GOG6F 15/00 (2006.01) Yuanmin Cai
GOG6F 13/16 (2006.01)
(52) US.CL (57) ABSTRACT
C.PC .............. o GO6F 13/1689 (2013.01) A method, system and processing device for retiring data
(58) Field of Classification Search entries held within a store queue (STQ). The STQ of a pro-
USPC T TS 712/218 cessor cache is modified to receive and process several types
See application file for complete search history. of data entries including: non-synchronized (non-sync),
. thread of execution synchronized (thread-sync), and all
(56) References Cited

U.S. PATENT DOCUMENTS

thread of execution synchronized (all-thread-sync). The task
of storing data entries, from the STQ out to memory or an
input/output device, is modified to increase the effectiveness
of the cache. The modified STQ allows non-sync, thread-
sync, and all-thread-sync instructions to coexist in the STQ
regardless of the thread of execution. Stored data entries, or
stores are deterministically selected for retirement, according

6,308,245 B1  10/2001 Johnson et al.

6,378,124 Bl 4/2002 Bates et al.

6,481,251 Bl  11/2002 Meier et al.

6,834,058 Bl 12/2004 Moyal et al.

7,058,049 B2 6/2006 Tanaka et al.

7,143,122 B2 11/2006 Burton et al. to the data entry type.
7,164,676 Bl 1/2007 Chakraborty

7472260 B2 12/2008 Lien et al.

17 Claims, 6 Drawing Sheets

BEGIN
400

COMPARE ADDRESS OF NEW STORE
TO PRE-EXISTING ENTRIES WITH RS=1
402

SET RS BIT
404

SET HE=1,
SET HPTR=LEATS
408
SET HE=t;
SET HPTR=LEAT,
412

CLEAR RS BIT OF
MATCHING ENTRY
418

et LEAT, = new
STQ entry number
424



US 9,170,962 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

U.S. Appl. No. 11/963,043 entitled “Sync-ID for Multiple Concur-
rent Sync Dependencies in an Out-of-Order Store Queue”; Advisory
action dated Jun. 30, 2014 (3 pg).

U.S. Appl. No. 11/963,043 entitled “Sync-ID for Multiple Concur-
rent Sync Dependencies in an Out-of-Order Store Queue”; Final
office action dated Mar. 18, 2014 (5 pg).

U.S. Appl. No. 11/963,043 entitled “Sync-ID for Multiple Concur-
rent Sync Dependencies in an Out-of-Order Store Queue”; Non-Final
office action dated Oct. 28, 2013 (6 pg).

U.S. Appl. No. 11/963,043 entitled “Sync-ID for Multiple Concur-
rent Sync Dependencies in an Out-of-Order Store Queue”; Notice of
Allowance dated Aug. 28, 2014 (7 pg).

* cited by examiner



US 9,170,962 B2

Sheet 1 of 6

Oct. 27, 2015

U.S. Patent

oLl

Z1 dsjjonuo)
O/l

221 J8jjonuo)

AOWBN

oD Z1

(4% €01
AN dos anenp 810}1S

4 ¢ol
Amn dos | enenp eloig

901 voL
Y 8yoed-a Y 8yoed-|

901 v0l
geyoeD-a| | €°uoed-

Z0L
8100 1088890id

Z01
8107 108889014

00} Jossaooid

Gl




¢ Old

US 9,170,962 B2

A 4

Sheet 2 of 6

Oct. 27, 2015

U.S. Patent

0
IZ¢ | Sez | T2 | Vez | Ble | iz | G | TIZ¢ | 60z | I0¢ | S0z | UB
eeq | 38 | YMS | LMS | MldH | 3H | sd | QL | dALL | Haav | A | TOC
00 el9eL DLS
€0l




U.S. Patent Oct. 27, 2015 Sheet 3 of 6 US 9,170,962 B2

NEW STORE
ARRIVE IN STQ?

SET HE
310

.

SET HPTR=LEATS
312

AN ATS?
306

INVERT SWAA
314

v

FIG. 4 FIG. 5

SET ASP
316

v

CAPTURE SWAA
318

v

CLEAR RS BIT
320

SET ALL LEATy =
new entry number
322

v
SET LEATS = new
entry number

324

END




U.S. Patent

SOMBINE NEW STOR
Q MATCHING ENTR

ADDRESS
MATCH STQ ENTRY?
414

CLEAR RS BIT OF
MATCHING ENTRY
418

CAPTURE

SET HPTR=LEAT,, [

Oct. 27,2015 Sheet 4 of 6 US 9,170,962 B2
BEGIN
400
COMPARE ADDRESS OF NEW STORE
TO PRE-EXISTING ENTRIES WITH RS=1
402
v
SETRSBIT
404
SET HE=1;
SET HPTR=LEATS |—
408
SET HE=1;

412

A

SWTA/SWAA
422

v

SET HE=T; Set HPTR
= maiching entry num

420

Set LEAT;4= new
STQ entry number
424

Set LEATS = new
STQ entry number
426

END
428

FIG. 4



U.S. Patent

Oct. 27, 2015

BEGIN
500

INVERT SWTA,,
510

v

SET TSPy
512

¥

CLEAR RS BIT OF
ALL VALID ENTRIES
FOR SAME THREAD

514

Sheet 5 of 6

US 9,170,962 B2

SET HE=1
SET HPTR=LEATS
504

SET HE=1
SET HPTR=LEAT,
508

A 4

A4

CAPTURE
SWTA/SWAA
516

v

Set LEAT ;4= new
entry number
518

v

Set LEATS = new
entry number
520

END
522

FIG. 5



U.S. Patent Oct. 27, 2015 Sheet 6 of 6 US 9,170,962 B2

RECEIVE ENTRY
602

ISV BIT SET?
604

WAIT UNTIL NEXT
CYCLE
626
7'y

NO
IS HE=1 BIT SET?

€08

SWT=SWTR,?
614

ISASTOR

NO RETIRING THIS

A

SWA=SWAR?
816

NO

A

WAITING FOR
NEW STORES?

CLEAR HE BIT
612

MAKE RETIRE
REQUEST FOR STORE
620

.

END _ RETIRE STORE
624 822

il

A




US 9,170,962 B2

1
DYNAMIC DESIGNATION OF RETIREMENT
ORDER IN OUT-OF-ORDER STORE QUEUE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to the following co-
pending U.S. patent application filed on even date herewith
incorporated herein by reference in its entirety: Ser. No.
11/963,043 (RPS920070148US1), entitled “SYNC-ID FOR
MULTIPLE CONCURRENT SYNC DEPENDENCIES IN
AN OUT-OF-ORDER STORE QUEUE”.

BACKGROUND

1. Technical Field

The present invention generally relates to processors and in
particular to a technique for enhancing operations within a
processor.

2. Description of the Related Art

A processor is a digital device that executes instructions
specified by a computer program. A typical computer system
includes a processor coupled to a system memory that stores
program instructions and data to be processed by the program
instructions. High level processor instruction execution may
be broken down into three main tasks: (1) loading data into the
upper level cache from memory or an input/output (I/O)
device; (2) performing arithmetic operations on the data
loaded from memory; and (3) storing the results out to
memory or to an /O device.

Ofthe three main tasks for processor instruction execution,
storing, or writing the data to the memory (or 1/O device) is
the most flexible in regards to the latency of completing the
task. Therefore, when there is a simultaneous request to
access the upper level cache for loading and a request to
access the upper level cache for storing, the loading operation
is typically chosen to proceed prior to the storing operation. If
multiple requests are made to load data, a request to store data
to the cache may occur on consecutive processor execution
cycles without success. The most common method of han-
dling the occurrence of waiting to store data to the cache is to
utilize a store queue (STQ). A STQ holds the data to be stored
while waiting to access the cache.

Some STQs allow more recently processed data to write (or
store) to the cache before data that has been waiting longer
has been written to the cache. The process of younger data
retiring (i.e. writing data into the cache) before older data
retiring is known as out-of-order (O00O) operations. OoO
STQs may introduce data integrity problems also known as
store ordering hazards. For example, in a store ordering haz-
ard, a younger data store to a given address may be retired
prior to an older store to the same address. The data integrity
problems resulting from the OoO STQ may result in a viola-
tion of the sequential execution model that is standard in
processor architecture.

There are current methods of processing data stores to
address the problems of OoO STQ, such as operations utiliz-
ing dependency vectors or synchronization identification
(SID). Although dependency vectors are able to fully handle
multiple synchronizing operations within an OoO STQ con-
currently, use of these vectors does not scale well to larger
(e.g. greater than sixteen entry) STQs. Although SID opera-
tions address the problem of processing synchronized entries
from a particular thread, SID operations do not permit mul-
tiple all-thread synchronization operations to coexist simul-
taneously within a STQ. Dependency vectors and SIDs are
effective in some aspects of STQ operations. However, the

15

20

25

30

40

45

55

2

restrictions of SIDs decrease the efficiency of the processor
instruction execution; thereby, decreasing the efficiency of
the processor, and the lack of scalability when using depen-
dency vectors in large STQs raises the area and power costs of
the processor more than is desired.

SUMMARY OF ILLUSTRATIVE
EMBODIMENTS

Disclosed are a method, system and process for retiring
data entries held within a store queue (STQ). The STQ of a
processor cache is modified to receive and process several
types of data entries including: non-synchronized (non-sync),
thread of execution synchronized (thread-sync), and all
thread of execution synchronized (all-thread-sync). The task
of storing data entries, from the STQ out to memory or an
input/output device, is modified to increase the effectiveness
of the cache. The modified STQ allows non-sync, thread-
sync, and all-thread-sync instructions to coexist in the STQ
regardless of the thread of execution. Stored data entries, or
stores are deterministically selected for retirement, according
to the data entry type.

In one embodiment, stores are selected for retirement from
a STQ according to whether the data entry is a non-sync,
thread-sync, or all-thread-sync data entry. Non-synchronized
data entries retire out of order (OoQ), and synchronized data
entries retire in-order. Flags are utilized to manage data entry
retirement for OoO verses in-order operations. Flags for man-
aging the in-order verses OoQO retirements are referred to as:
thread-sync present (TSP,,,) bit, for controlling retirements
per thread, and all-thread sync present (ASP), for controlling
retirements per STQ.

In one embodiment, thread-sync data entries are present in
the STQ. When a thread-sync data entry is present, the OoO
STQ temporarily retires data entries sequentially, in order of
the oldest to the youngest data entry. Stores within the STQ
which are younger than the thread-sync data entry retire
sequentially until each thread-sync data entry within a given
thread of execution is retired. Data entries within the STQ that
are older than the thread-sync data entry continue to follow an
000 process of retiring. Once the thread-sync data entry
retires, the data processing operations return to an OoO pro-
cess of retiring data entries, unless an all-thread-sync is
present in the STQ.

In one embodiment, all-thread sync data entries are present
in the STQ. When the all-thread-sync data entry is present,
data entries younger than the all-thread-sync data entry retire
sequentially. Data entries older than the all-thread-sync data
entry retire utilizing OoO processing operations, or sequen-
tially if the data entry involves a particular thread of execution
that has a thread-sync present. When the all-thread-sync data
entries retire, each thread independently returns to OoO
operations unless the thread has thread-sync data entries in
the STQ.

The above as well as additional features of the present
invention will become apparent in the following detailed
written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention itself will best be understood by reference to
the following detailed description of an illustrative embodi-
ment when read in conjunction with the accompanying draw-
ings, wherein:

FIG. 1 is a block diagram of a multi-processor data pro-
cessing system according to one embodiment of the inven-
tion;



US 9,170,962 B2

3

FIG. 2 is a block diagram representing components of a
STQ utilized to complete data entry processing operations, in
accordance with one embodiment of the invention;

FIG. 3 is a logic flow chart for allocating all-thread syn-
chronized data entries within a STQ, according to one
embodiment of the invention;

FIG. 41is alogic flow chart for allocating non-synchronized
data entries within a STQ, in accordance with one embodi-
ment of the invention;

FIG. 5 is a logic flow chart for allocating thread-synchro-
nized data entries within a STQ, according to one embodi-
ment of the invention; and

FIG. 6 is a logic flow chart for determining eligibility for
retirement of data entries within an STQ, in accordance with
one embodiment of the invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The illustrative embodiments provide a method, system,
and process for retiring data entries held within a store queue
(STQ). The STQ of a processor cache is modified to receive
and process several types of data entries including: non-syn-
chronized (non-sync), thread of execution synchronized
(thread-sync), and all thread of execution synchronized (all-
thread-sync). The task of storing data entries, from the STQ
out to memory or an input/output device, is modified to
increase the effectiveness of the cache. The modified STQ
allows non-sync, thread-sync, and all-thread-sync instruc-
tions to coexist in the STQ regardless of the thread of execu-
tion. Stored data entries, or stores are deterministically
selected for retirement, according to the data entry type.

In the following detailed description of exemplary embodi-
ments of the invention, specific exemplary embodiments in
which the invention may be practiced are described in suffi-
cient detail to enable those skilled in the art to practice the
invention, and it is to be understood that other embodiments
may be utilized and that logical, architectural, programmatic,
mechanical, electrical and other changes may be made with-
out departing from the spirit or scope of the present invention.
The following detailed description is, therefore, not to be
taken in a limiting sense, and the scope of the present inven-
tion is defined only by the appended claims.

Within the descriptions of the figures, similar elements are
provided similar names and reference numerals as those of
the previous figure(s). Where a later figure utilizes the ele-
ment in a different context or with different functionality, the
element is provided a different leading numeral representa-
tive of the figure number (e.g., 1xx for FIGS. 1 and 2xx for
FIG. 2). The specific numerals assigned to the elements are
provided solely to aid in the description and not meant to
imply any limitations (structural or functional) on the inven-
tion.

It is understood that the use of specific component, device
and/or parameter names are for example only and not meant
to imply any limitations on the invention. The invention may
thus be implemented with different nomenclature/terminol-
ogy utilized to describe the components/devices/parameters
herein, without limitation. Each term utilized herein is to be
given its broadest interpretation given the context in which
that terms is utilized. Specifically, as utilized herein, the term
“store(s)” may be utilized to describe a data entry within the
store queue. The terms “store” and “data entry” are utilized
interchangeably. The following terms are utilized to describe
the types of stores utilized herein: non-synchronized (non-
sync), thread of execution synchronized (thread-sync), and
all thread of execution synchronized (all-thread-sync). The

10

15

20

25

30

35

40

45

50

55

60

65

4

term “retire” refers to writing a store from the STQ into a
cache. “Allocate or allocated” is a term utilized herein, refer-
ring to the action of moving a new store that is entering the
STQ into an available STQ entry. “Out of order (000)”
describes the processing of stores within the STQ where a
younger store is retired before an older store. The term “in-
order” describes data entries processing in the order in which
the store entered into the STQ (i.e. processed from the oldest
data entry to the youngest data entry).

With reference now to the figures, FIG. 1 depicts a block
diagram representation of a multi-processor data processing
system (DPS). DPS 150 comprises processor 100 having one
or more processor cores 102. Processor cores 102 utilize
instruction cache (I-cache) 104 as a buffer between external
memory and processor cores 102. Data cache (D-cache) 106
of processor cores 102 receives data from memory 126.
I-cache 104 and D-cache 106 are level 1 (I.1) caches that
share level 2 (I.2) cache 118. I-cache 104 and D-cache 106 are
coupled to [.2 cache 118, which operates as a memory cache
external to the processor core. Store queue 103 comprises
store queue processing (SQP) utility (or logic) 123. Store
queue 103 processes store requests from processor 100.

Processor 100 is connected to memory controller 122 and
1/O controller 120 via interconnect (system bus) 110 by which
processor 100 communicates with memory 126, I/O devices
124, and other peripheral devices. Interconnect 110 may be a
bifurcated bus with a data bus for routing data and a separate
address bus for routing address transactions and other opera-
tions. Processor 100 communicates with main memory 126
via [.2 cache 118 which is coupled to memory controller 122
via system interconnect 110. Memory controller 122 may be
configured to manage the transfer of data between [.2 cache
118 and main memory 126. Processor 100 may also include a
level 3 (L3) directory (not illustrated). The [.3 directory may
be onoroff chip with access to an off chip 1.3 cache. While the
present invention is described with specific reference to the
L2 cache in communication with store queue (STQ) 103
within a multi-level cache architecture, the cache architecture
need not be a multi-level one.

Those of ordinary skill in the art will appreciate that the
hardware and basic configuration depicted in FIG. 1 may
vary. For example, other devices/components may be used in
addition to or in place of the hardware depicted. The depicted
example is not meant to imply architectural limitations with
respect to the present invention. The processor chip depicted
in FIG. 1 may be, for example, an IBM Power processor, a
product of International Business Machines Corporation in
Armonk, N.Y.

Among the code/instructions/logic provided by SQP utility
123, and which are specific to the invention, are: (a) code/
logic for processing non-sync stores within STQ 103; (b)
code/logic for processing thread-sync stores within the STQ
103; and (c) code/logic for processing all-thread-sync stores
within the STQ 103. For simplicity of the description, the
collective body of code/logic that enables these various fea-
tures is referred to herein as SQP utility 123. According to the
illustrative embodiment, various features of the invention are
carried out by logic components on processor 100 and SQP
utility 123. SQP utility 123 initiates a series of functional
processes that enable the above functional features as well as
additional features/functionality, which are described below
within the description of FIGS. 2-6.

With reference now to FIG. 2, which illustrates the major
functional components of STQ 103 utilized to complete data
store operations. STQ 103 comprises STQ table 200 and bit
manager 240. STQ 103 is utilized for tracking data stores
issued by processor 100. STQ table 200 is partitioned into



US 9,170,962 B2

5

several input categories: entry 201(a-r), valid bit 205, address
register 207, transaction type (ttyp) register 209, thread iden-
tification (T1D) 211, recent store (RS) 215, hazard exists (HE)
217, hazard pointer (HPTR) 219, thread-sync wrap bit (SWT)
221, all-thread-sync wrap bit (SWA) 223, byte enable register
225, and data register 227.

Entry 201a-# is the input of the processor issued stores.
STQ table 200 sends and receives information to and from bit
manager 240. Bit manager 240 comprises last entry allocated
(LEATS, also referred to as LEATS pointer) 220, last entry
allocated for each thread (LEAT,, ;, alsoreferredtoas LEAT,,,
pointer) 234, thread-sync present thread identification
(TSP,,;,) 222, thread-sync wrap bit for allocation per thread
identification (SWTA,, ;) 224, thread-sync wrap bit for retire-
ment per thread identification (SWTR,, ;) 226, all-thread-sync
present (ASP) 228, all-thread-sync wrap bit for allocation
(SWAA)230, and all-thread-sync wrap bit for retirement 232.
LEAT,, 234, TSP, 222, SWTA,,, 224, and SWTR,,, 226
include an input for each thread of execution (e.g. 0 to x,
where ‘0’ is the initial thread of execution and ‘x’ is the final
thread of execution) being processed.

In one embodiment, elements within STQ table 200 repre-
sent hardware components utilized to complete the opera-
tions of STQ 103. Flags for controlling in-order operations
verses Q0O operations are described by TSP, ;222 and ASP
228. TSP,,, 222 controls in-order processing operations for
each thread of execution, and ASP 228 controls in-order
operations for all threads of execution. LEATS 220 and
LEAT,,; 234 are pointers utilized for managing in-order
operations. LEAT,,; 234 manages in-order operations per
thread of execution, while LEATS 220 manages in-order
operations for all threads of execution.

In one embodiment, the synchronized wrap bits of
SWTA,,, 224, SWTR,, 226, SWAA 230, SWAR 232, SWT
221, and SWA 223 are flags for managing which OoO entry
may retire before the first synchronized data entry may retire
from STQ 103. SWTA,,, 224 and SWTR,,, 226 are flags
which manage the OoO data entries per thread, while SWAA
230 and SWAR 232 are shared by all threads. Flags for
managing OoO operations per data entry are SWT 221 and
SWA 223.

In one embodiment, for each synchronized process, if the
bit of TSP, ;222 is equal to zero when a thread-sync store for
a given thread enters STQ 103, then SWTA,, ;224 is inverted
(i.e. a bit equal to one becomes zero, and a bit equal to zero
becomes one) and TSP, ; 222 is set to one. If no valid entries
for a particular thread within STQ 103 have SWT 221 equal
to SWTR,,; 226, then the bit of SWTR,,; 226 is inverted.
When the bit of SWTR,,, 226 is inverted, the store which
forced the bit of SWTA,, ;224 to be inverted may retire. When
an all-thread-sync store enters STQ 103, if ASP 228 is equal
to zero, then the bit of SWAA 230 is inverted and ASP 228 is
set to one. Ifno valid entries exist having their SWA 223 equal
to the bit of SWAR 232, then SWAR 232 is inverted; thereby
allowing the all-thread sync store which caused SWAA 230to
be inverted to retire.

In one embodiment, STQ 103 may process a “normal
store”. A normal store may be a data entry present in STQ
table 200 that is a non-sync, non-thread-sync, and non-all-
thread-sync store. When the bit for TSP, ; 222 and ASP 228
are both equal to zero, the data entry is processed as a normal
store. Normal stores retire utilizing out-of-order (OoO) pro-
cessing. OoO processing may retire stores youngest to oldest,
unless the youngest store possesses the same address as an
older store that has not retired. When a younger store and
older store are assigned to the same address, the younger store
is assigned HE 217 bit equal to one, which tracks when the

20

30

40

45

50

55

6

older store retires. After the older store retires, the younger
store is free to retire. The new bit entry for RS 215 is set equal
to one to confirm the presence of the youngest STQ entry for
that address, while the bit for RS 215 of older matching stores,
are cleared. Therefore, only stores with a bit for RS 215 equal
to one are compared. HE 217 is set equal to one if a store
ordering hazard exists. The bits of HPTR 219 are an encoded
value of the STQ entry (entry 201a-) that points to the entry
that must retire before the most recent entry is allowed to
proceed.

In one embodiment, a normal store may be processed when
one or more thread-sync stores are present in STQ table 200.
When a thread-sync store is present in STQ table 200, but no
all-thread-sync stores is present, the bit of TSP, ;222 is equal
to one and the bit of ASP 228 is equal to zero. The new bit
entry for RS 215 is set equal to one to confirm the presence of
the youngest STQ entry for that address, while the bit for RS
215 of older matching stores, are cleared. The bits of HPTR
219 are set equal to the bits of LEAT ,, ,234. LEAT , ;234 helps
to manage in-order operations, by pointing to the last entry
allocated for each thread of execution operating within STQ
103. LEAT,,, pointer 234 is updated, pointing to the newly
allocating entry for the entry’s thread of execution operating
within STQ 103. LEATS pointer 220 is updated, pointing to
the newly allocating entry within STQ 103. The bits of
SWTA,,; 224 and SWAA 230 are saved without being
changed into bits SWT 221 and SWA 223, respectively, of the
newly allocating STQ entry.

In one embodiment, a normal store may be processed when
one or more all-thread-sync stores are present in STQ table
200. When an all-thread-sync store is present in STQ table
200, the bit of ASP 228 is equal to one. The new bit entry for
RS 215 is set equal to one to confirm the presence of the
youngest STQ entry for that address, while older bit entries
for RS 215 of older matching stores, are cleared. The bitof HE
pointer 217 is set equal to one because a store order hazard
exists. The bits of HPTR 219 are set equal to the bits of
LEATS 220. LEAT,,, pointer 234 is updated, pointing to the
newly allocating STQ entry for its thread of execution oper-
ating within STQ 103. LEATS pointer 220 is updated, point-
ing to the last entry allocated within STQ 103. The bits of
SWTA,,; 224 and SWAA 230 remain unchanged and are
saved into bits SWT 221 and SWA 223, respectively.

In another embodiment, a thread-sync store is processed
when no synchronized stores are present in STQ table 200.
When there are no synchronized stores present in STQ table
200, the bits of TSP, ;222 and ASP 228 are equal to zero. Ifa
thread-sync store is processed with no other synchronized
stores present (non-sync entries may be present), the bit of
SWTA,,,; 224 is inverted and saved into bit SWT 221 of the
newly allocating STQ entry and the bit of SWAA 230 is saved
into the bit of SWA 223 of the newly allocating STQ entry.
Thebits of LEAT , ;234 and LEATS 220 are updated, pointing
to the newly allocating entry withing STQ 103. Older bit
entries for RS 215 of all older stores for that thread are
cleared. The bit of TSP, ;222 is set equal to one, confuming
a thread-sync store is present in STQ table 200. Data entries
allocated to the STQ 200 when the bit of TSP,,; 222 is set
equal to one, will process in-order.

In one embodiment, a thread-sync entry is processed when
one or more thread-sync entries and no all-thread-sync entries
are present in STQ table 200. When a thread-sync entry is
present in STQ table 200, the bit of TSP, ;222 is equal to one,
and when no all-thread-sync entry is present in STQ table
200, the bit of ASP 228 is equal to zero. HE pointer 217 is set
equal to one to confirm a store hazard exists. The bits of
HPTR 219 are set equal to the bits of LEAT,,; pointer 234.



US 9,170,962 B2

7

LEAT,,, pointer 234 is updated, pointing to the newly allo-
cating STQ entry for the entry’s thread of execution operating
within STQ 103. LEATS pointer 220 is updated, pointing to
the last entry allocated within STQ 103. The bits of SWTA,,,
224 and SWAA 230 remain unchanged and are saved into bits
SWT 221 and SWA 223.

In one embodiment, a thread-sync store is processed when
one or more all-thread-sync stores are present in STQ table
200. When an all-thread-sync store is present in STQ table
200, the bit of ASP 228 is equal to one. The new bit entry for
RS 215 is set equal to one to confirm the presence of an
all-thread-sync store, while bit entries for RS 215 of all pre-
vious stores, are cleared. The bit of HE 217 is set equal to one
to confirm a store hazard exists. The bits of HPTR 219 are set
equal to the bits of LEATS 220. LEAT,,, pointer 234 is
updated, pointing to the newly allocating STQ entry for its
thread of execution operating within STQ 103. LEATS
pointer 220 is updated, pointing to the last entry allocated
within STQ 103. SWTA,,; 224 and SWAA 230 bits remain
unchanged and are saved into bits SWT 221 and SWA 223,
respectively.

In another embodiment, an all-thread-sync store is pro-
cessed when no synchronized stores are present in STQ table
200. When there are no synchronized stores present in STQ
table 200, the bits of TSP,, ;222 and ASP 228 are equal to zero.
The bit of SWA A 230 is inverted and saved into bit SWA 223
of the newly allocating STQ entry. LEAT,,; pointer 234 is
updated, pointing to the newly allocating STQ entry for its
thread of execution operating within STQ 103. LEATS
pointer 220 is updated, pointing to the last entry allocated
within STQ 103. The bit of ASP 228 is set equal to one. Older
bit entries for RS 215 of all older stores for all threads are
cleared.

In one embodiment, an all-thread-sync store is processed
when one or more thread-sync stores are present in STQ table
200. When an all-thread-sync store is present in STQ table
200, the bit of TSP,;; 222 is equal to one, and the bit of ASP
228 is equal to zero. The new bit entry for RS 215 of the
current store is set equal to one to confirm the presence of a
thread-sync store, while bits for RS 215 of all older stores, are
cleared. The bits of LEATS 220 are updated. The bits of
LEAT, ;234 are updated, pointing to the last entry allocated
for each thread of execution operating within STQ 103;
wherein updating comprises changing the binary bits of
LEAT,, ;234 and LEATS 220 to match the entry allocated by
the STQ. The bit of SWAA 230 is inverted and saved into bit
SWA 223. The bit of ASP 228 is set equal to one.

In one embodiment, an all-thread-sync store is processed
when one or more all-thread-sync stores are present in STQ
table 200. When an all-thread-sync store is present in STQ
table 200, the bit of ASP 228 is equal to one. The new bit entry
for RS 215 is set equal to one to confirm the presence of an
all-thread-sync store, while older bit entries for RS 215 of
previous stores, are cleared. The bit of HE 217 is set equal to
one to confirm a store hazard exists. The bits of HPTR 219 are
set equal to the bits of LEATS 220. The bits of LEATS 220 are
updated. The bits of LEAT,, ;234 are updated, pointing to the
last entry allocated for each thread of execution operating
within STQ 103. The bit of SWAA 230 remains unchanged,
and is saved into bit SWA 223.

FIGS. 3-6 are flow charts illustrating various methods by
which the above processes of the illustrative embodiments are
completed. Although the methods illustrated in FIGS. 3-6
may be described with reference to components shown in
FIGS. 1-2, it should be understood that this is merely for
convenience and alternative components and/or configura-
tions thereof can be employed when implementing the vari-

10

15

20

25

30

35

40

45

50

55

60

65

8

ous methods. FIG. 3 describes the method for allocating
all-thread-sync stores within STQ 103 (FIG. 1). The method
for allocating non-sync stores is described by FIG. 4. FIG. 5
describes the method for allocating thread-sync stores. The
method for determining the eligibility for retirement of a store
from the STQ (103) is described in FIG. 6. Key portions of the
methods may be completed by SQP utility 123 of STQ 103.
The methods are thus described from the perspective of SQP
utility 123.

The process of FIG. 3 begins at initiator block 300 and
proceeds to block 302, at which a decision is made whether a
new store has arrived in the STQ. If a new store has arrived in
the STQ, the process continues to block 304. If a new store has
not arrived, the process remains at block 302 until a new store
arrives in the STQ. At block 304, a decision is made whether
the new store is a synchronized store. If the new store is not a
synchronized store, the process continues to FIG. 4. If the new
store is a synchronized store the process continues to block
306. At block 306, a decision is made whether the new store
is an all-thread-synchronized (ATS) store. If the new store is
not an ATS store the process continues to FIG. 5. If the new
store is an ATS store, the process continues to block 308. A
decision is made at block 308, whether the all-thread sync
present (ASP) bit, within the bit manager (240) of the STQ, is
equal to one. If ASP is equal to one, the process continues to
block 310 where the hazard exist (HE) bit is set equal to one,
acknowledging that a hazard exists in the STQ. At block 312,
the bits of HPTR are set equal to the bits of LEATS; thereby
pointing to the last entry allocated by the STQ. The process
continues to block 318.

If ASP is not equal one at block 308, the process continues
to block 314. At block 314, the all-thread-sync wrap bit for
allocation (SWAA) is inverted. SQP utility 123 sets the all-
thread-sync present (ASP) bit to one, at block 316, to verify
the all-thread-sync is present. At block 318, the current value
of the SWAA bit is captured (or saved) by SQP utility 123.
The recent store (RS) bit, for the current store and for all
pre-existing stores in the STQ, is cleared at block 320. At
block 322, the last entry allocated pointer per thread
(LEAT,,,) is updated to point to the newly allocating entry.
The last entry allocated pointer for the STQ (LEATS) is
updated at block 324 to point to the newly allocating entry.
The process ends at block 326.

The process of FIG. 4 is a continuation of FIG. 3, wherein
a decision is made at block 304 that the new store is a non-
synchronized (non-sync) store. The process of FIG. 4 begins
at block 400. At block 402 an assessment is made comparing
the new store target address to the address of pre-existing
stores that have an RS bit equal to one. The RS bit is set equal
to one at block 404. A decision is made by SQP utility 123, at
block 406, whether the ASP bit of the new store is equal to
one. If the ASP bit is equal to one, the process continues to
block 408. At block 408 the HE bit for the new store is set to
one and the bits of HPTR are set equal to the bits of LEATS.
The process continues to block 422.

Ifthe ASP bit of the new store is not equal to one, a decision
is made at block 410, whether the thread-sync present per
thread (TSP, ) bit is equal to one. If the TSP, , bit is equal to
one at block 410, the process continues to block 412. At block
412 the HE bit for the new store is set to one and the bits of
HPTR are set equal to the bits of LEAT,, ;. The process con-
tinues to block 422. If at block 410 the TSP,,; is not equal to
one, the process continues to block 414. A decision is made at
block 414 whether in block 402 the target address of the new
store matched the address of another store within STQ table
200 (FIG. 2). If the address of the new store matches the
address of another entry, the process continues to block 416.



US 9,170,962 B2

9

If the target address of the new store does not match the
address of another entry within STQ table 200, then the
process continues to block 422.

At block 416 a decision is made whether the new store is
going to be gathered (or combined) with an older store to the
same address or whether the new store will be allocated to a
new STQ entry. If a new entry is not allocated, then the store
is being combined with a pre-existing entry. Thus, the new
store would not clear the RS bit of the matching entry (that the
new store is gathering to), and the new store would also not set
the HE bit of the entry that the new store is gathering to. If a
new store is not allocated, the process ends at block 428. If a
new store is allocated, the process continues to block 418. At
block 418 the RS bits are cleared for the matching address
entry. At block 420, the HE bit of the new store is set to one,
identifying a hazard exists, and the HPTR is set equal to the
matching entry number (pointing to the new entry). The pro-
cess proceeds to block 422. Atblock 422, the bits of SWTA
and SWAA are captured (i.e. saved) by SQP utility 123. The
bits of LEAT,, , are updated to point to the entry allocated by
the STQ utility at block 424. At block 426, the bits of LEATS
are updated to point to the entry allocated by the STQ utility.
The process ends at block 428.

The process of FIG. 5 is initiated when the determination is
made (at block 306 of FIG. 3) that the new store was not a
non-sync store or an all-thread-sync store; and thus, the store
is a thread-sync store. The process begins at block 500. At
block 502, a decision is made whether the bit of ASP is equal
to one. Ifthe bit of ASP is equal to one the process continues
to block 504 where the HE bit is set to one, and the bits of
HPTR are set equal to the bits of LEATS. The process then
proceeds to block 514. If the bit of ASP is not equal to one, the
process continues to block 506. At block 506 a determination
is made. If the bit of TSP, is equal to one, the process
continues to block 508. If the bit of TSP, , is not equal to one,
the process continues to block 510. The HE bit is set equal to
one and HPTR is set equal to LEAT,, ;. at block 508. At block
510, the bit of SWTA,, , is inverted. The bit of TSP,, , is set to
one, at block 512. At block 514, the RS bit for each pre-
existing data entry is cleared, within the current thread. The
bits of SWTA,, ; and SWAA are captured, at block 516. The
bits of LEAT , ; are updated at block 518 to point to the newly
allocating entry. At block 520, the bits of LEATS are updated
to point to the newly allocating entry. The process ends at
block 522

The process for determining whether a store is eligible to
retire is illustrated by FIG. 6. The process begins at block 600
and continues to block 602. At block 602 an entry is received
in the STQ. A decision is made, at block 604, whether the
valid (V) bit is set, wherein the valid bit confirms the store is
a legitimate STQ entry. If the V bit is not set the process
returns to block 602. If the V bit is set, the process continues
to block 606. A decision is made at block 606 whether the HE
bit is set. If the HE bit is not set, the process continues to block
614. If the HE bit is set the process continues to block 608. At
block 608, a decision is made whether a store is set to retire
during the current cycle. If a store is set to retire, the process
continues to block 610. Ifa store is not set to retire, the process
continues to block 626, wherein the data entry waits for the
next cycle to be processed.

A decision is made at block 610, whether the encoded value
of'the HPTR equals the encoded value of the current store. If
the encoded value of the HPTR is not equal to the encoded
value of the current store, the process continues to block 626,
where the entry waits for the next cycle to be processed. If the
encoded value of the HPTR is equal to the encoded value of

40

45

10
the current cycle, then the HE bit is cleared at block 612. The
process proceeds to block 626 where the entry waits for the
next cycle to be processed.

At block 614 a decision is made whether the bit of SWT is
equal to the bit of SWTR,, ;. If the bit of SWT equals the bit of
SWTR,,;, the process continues to block 616. If the bits are
not equal, the process continues to block 626, where the entry
waits until the next cycle is processed. A decision is made at
block 616 whether the bit of SWA is equal to the bit of SWAR.
If the bits of the SWA are equal to the bits of SWAR, the
process continues to block 618. If the bit of SWA is not equal
to the bit of SWAR, the process proceeds to block 626 to wait
for the next cycle to be processed. At block 618, a decision is
made whether the SQP utility is waiting for new stores to
combine with the STQ entry. If the SQP utility is waiting for
new stores to combine with the STQ entry, the process
remains at block 618. If the SQP utility is not waiting for new
stores to combine with the STQ entry, the process continues
to block 620. At block 620, a request to retire the current store
is made. The store is retired at block 622. The process ends at
block 624. In some implementations, the STQ requires sev-
eral cycles before the retirement request is honored, therefore
the STQ entry waits until the STQ receives permission to
retire the STQ entry.

In the flow charts above, one or more of the methods are
embodied as a computer program product in a computer
readable medium containing computer readable code such
that a series of steps are performed when the computer read-
able code is executed on a computing device. In some imple-
mentations, certain steps of the methods are combined, per-
formed simultaneously or in a different order, or perhaps
omitted, without deviating from the spirit and scope of the
invention. Thus, while the method steps are described and
illustrated in a particular sequence, use of a specific sequence
of'steps is not meant to imply any limitations on the invention.
Changes may be made with regards to the sequence of steps
without departing from the spirit or scope of the present
invention. Use of a particular sequence is therefore, not to be
taken in a limiting sense, and the scope of the present inven-
tion is defined only by the appended claims.

As will be further appreciated, the processes in embodi-
ments of the present invention may be implemented using any
combination of software, firmware or hardware. As a prepa-
ratory step to practicing the invention in software, the pro-
gramming code (whether software or firmware) will typically
be stored in one or more machine readable storage mediums
such as fixed (hard) drives, diskettes, optical disks, magnetic
tape, semiconductor memories such as ROMs, PROMs, etc.,
thereby making an article of manufacture (or computer pro-
gram product) in accordance with the invention. The article of
manufacture containing the programming code is used by
either executing the code directly from the storage device, by
copying the code from the storage device into another storage
device such as a hard disk, RAM, etc., or by transmitting the
code for remote execution using transmission type media
such as digital and analog communication links. The methods
of the invention may be practiced by combining one or more
machine-readable storage devices containing the code
according to the present invention with appropriate process-
ing hardware to execute the code contained therein. An appa-
ratus for practicing the invention could be one or more pro-
cessing devices and storage systems containing or having
network access to program(s) coded in accordance with the
invention.

Thus, it is important that while an illustrative embodiment
of the present invention is described in the context of a fully
functional computer (server) system with installed (or



US 9,170,962 B2

11

executed) software, those skilled in the art will appreciate that
the software aspects of an illustrative embodiment of the
present invention are capable of being distributed as a com-
puter program product in a variety of forms, and that an
illustrative embodiment of the present invention applies
equally regardless of the particular type of media used to
actually carry out the distribution. By way of example, a non
exclusive list of types of media, includes recordable type
(tangible) media such as floppy disks, thumb drives, hard disk
drives, CD ROMs, DVDs, and transmission type media such
as digital and analogue communication links.

While the invention has been described with reference to
exemplary embodiments, it will be understood by those
skilled in the art that various changes may be made and
equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many
modifications may be made to adapt a particular system,
device or component thereof'to the teachings of the invention
without departing from the essential scope thereof. There-
fore, it is intended that the invention not be limited to the
particular embodiments disclosed for carrying out this inven-
tion, but that the invention will include all embodiments fall-
ing within the scope of the appended claims. Moreover, the
use of the terms first, second, etc. do not denote any order or
importance, but rather the terms first, second, etc. are used to
distinguish one element from another.

What is claimed is:
1. A method comprising:
receiving a non-synchronized store into a store queue
(STQ);

in response to receiving the non-synchronized store in the
STQ, setting or clearing one or more flags;

in response to receiving the non-synchronized store in the
STQ, dynamically designating using the flags the non-
synchronized store to retire in-order if an older synchro-
nized store is already present in the STQ and, if an older
synchronized store is not already presented in the STQ,
dynamically designating using the flags the non-syn-
chronized store to retire out-of-order; and

retiring the non-synchronized store in accordance with its

dynamically designated retirement ordering, said retir-
ing including retiring the non-synchronized store in-
order after the synchronized store retires if the non-
synchronized store is designated to retire in-order and
otherwise retiring the non-synchronized store without
enforcing in-order retirement.

2. The method of claim 1, wherein said retiring further
comprises retiring the non-synchronized store out-of-order if
the non-synchronized store is designated to retire out-of-
order.

3. The method of claim 1, wherein the retiring further
comprises:

if at least one synchronized store is present in the STQ that

is younger than the non-synchronized store, permitting
retirement of the non-synchronized store out-of-order
and enforcing retirement of the non-synchronized store
before the at least one synchronized store retires.

4. The method of claim 1, wherein the dynamically desig-
nating further comprises:

determining whether the non-synchronized store targets an

address that is targeted by a preceding non-synchronized
store present within the STQ, and if so, dynamically
designating the non-synchronized store to retire in-or-
der.

10

15

20

25

30

35

40

45

50

55

60

65

12

5. The method of claim 1, wherein if an older thread-
synchronized store is already present in the STQ when the
non-synchronized store is received at the STQ, the method
further comprises:
retiring the thread-synchronized store in-order, prior to the
retirement of the non-synchronized store.
6. The method of claim 1, wherein if an all-thread synchro-
nized store is present in STQ when the non-synchronized
store is received at the STQ, the method further comprises:
permitting retirement of non-synchronized stores older
than the all-thread synchronized store out-of-order and
enforcing in-order retirement of synchronized stores
older than the all-thread synchronized store.
7. A processor chip comprising:
a processor core;
a store queue (STQ) coupled to the processor core; and
logic associated with the STQ, which logic performs the
functions of:
receiving a non-synchronized store into a store queue
(STQ);

in response to receiving the non-synchronized store in
the STQ, setting or clearing one or more flags;

in response to receiving the non-synchronized store in
the STQ, dynamically designating using the flags the
non-synchronized store to retire in-order if an older
synchronized store is already present in the STQ and,
ifan older synchronized store is not already presented
in the STQ, dynamically designating using the flags
the non-synchronized store to retire out-of-order; and

retiring the non-synchronized store in accordance with
its dynamically designated retirement ordering, said
retiring including retiring the non-synchronized store
in-order after the synchronized store retires if the
non-synchronized store is designated to retire in-or-
der and otherwise retiring the non-synchronized store
without enforcing in-order retirement.

8. The processor chip of claim 7, wherein said logic retires
the non-synchronized store out-of-order if the non-synchro-
nized store is designated to retire out-of-order.

9. The processor chip of claim 7, wherein the logic, if at
least one synchronized store is present in the STQ that is
younger than the non-synchronized store, permits retirement
of the non-synchronized store out-of-order and enforces
retirement of the non-synchronized store before the at least
one synchronized store retires.

10. The processor chip of claim 7, wherein if an older
thread-synchronized store is already present in the STQ when
the non-synchronized store is received at the STQ, the logic
retires the thread-synchronized store in-order, prior to the
retirement of the non-synchronized store.

11. The processor chip of claim 7, wherein if an all-thread
synchronized store is present in STQ when the non-synchro-
nized store is received at the STQ, the logic permits retire-
ment of non-synchronized stores older than the all-thread
synchronized store out-of-order and enforces in-order retire-
ment of synchronized stores older than the all-thread syn-
chronized store.

12. A data processing system comprising:

a memory hierarchy, including a lower level cache;

a processor core;

a store queue (STQ) coupled to and receiving input from
the processor core and providing output to at least one
component within the memory hierarchy;

logic associated with the STQ, which logic performs the
functions of:
receiving a non-synchronized store into a store queue

(STQ);



US 9,170,962 B2

13

in response to receiving the non-synchronized store in
the STQ, setting or clearing one or more flags;

in response to receiving the non-synchronized store in
the STQ, dynamically designating using the flags the
non-synchronized store to retire in-order if an older
synchronized store is already present in the STQ and,
ifan older synchronized store is not already presented
in the STQ, dynamically designating using the flags
the non-synchronized store to retire out-of-order; and

retiring the non-synchronized store in accordance with
its dynamically designated retirement ordering, said
retiring including retiring the non-synchronized store
in-order after the synchronized store retires if the
non-synchronized store is designated to retire in-or-
der and otherwise retiring the non-synchronized store
without enforcing in-order retirement.

13. The data processing system of claim 12, wherein said
logic retires the non-synchronized store out-of-order if the
non-synchronized store is designated to retire out-of-order.

14. The data processing system of claim 12, wherein the
logic, if at least one synchronized store is present in the STQ
that is younger than the non-synchronized store, permits

5

10

15

20

14

retirement of the non-synchronized store out-of-order and
enforces retirement of the non-synchronized store before the
at least one synchronized store retires.

15. The data processing system of claim 12, wherein the
logic determines whether the non-synchronized store targets
an address that is targeted by a preceding non-synchronized
store present within the STQ, and if so, dynamically desig-
nates the non-synchronized store to retire in-order.

16. The data processing system of claim 12, wherein if an
older thread-synchronized store is already present in the STQ
when the non-synchronized store is received at the STQ, the
logic retires the thread-synchronized store in-order, prior to
the retirement of the non-synchronized store.

17. The data processing system of claim 12, wherein if an
all-thread synchronized store is present in STQ when the
non-synchronized store is received at the STQ, the logic
permits retirement of non-synchronized stores older than the
all-thread synchronized store out-of-order and enforces in-
order retirement of synchronized stores older than the all-
thread synchronized store.

#* #* #* #* #*



